On strongly spanning k-edge-colorable subgraphs
نویسندگان
چکیده
منابع مشابه
ON STRONGLY SPANNING k-EDGE-COLORABLE SUBGRAPHS
A subgraph H of a multigraph G is called strongly spanning, if any vertex of G is not isolated in H. H is called maximum k-edge-colorable, if H is proper k-edge-colorable and has the largest size. We introduce a graph-parameter sp(G), that coincides with the smallest k for which a multigraph G has a maximum k-edge-colorable subgraph that is strongly spanning. Our first result offers some altern...
متن کاملOn spanning $k$-edge-colorable subgraphs
A subgraph H of a multigraph G is called strongly spanning, if any vertex of G is not isolated in H , while it is called maximum k-edge-colorable, if H is proper k-edge-colorable and has the largest size. We introduce a graph-parameter sp(G), that coincides with the smallest k that a graph G has a strongly spanning maximum k-edge-colorable subgraph. Our first result offers some alternative defi...
متن کاملGenerating k-Vertex Connected Spanning Subgraphs and k-Edge Connected Spanning Subgraphs
We show that k-vertex connected spanning subgraphs of a given graph can be generated in incremental polynomial time for any fixed k. We also show that generating k-edge connected spanning subgraphs, where k is part of the input, can be done in incremental polynomial time. These results are based on properties of minimally k-connected graphs which might be of independent interest.
متن کاملOn disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs
We show that any 2−factor of a cubic graph can be extended to a maximum 3−edge-colorable subgraph. We also show that the sum of sizes of maximum 2− and 3−edge-colorable subgraphs of a cubic graph is at least twice of its number of vertices.
متن کاملMaximum Δ-edge-colorable subgraphs of class II graphs
A graph G is class II, if its chromatic index is at least ∆ + 1. Let H be a maximum ∆-edge-colorable subgraph of G. The paper proves best possible lower bounds for |E(H)| |E(G)| , and structural properties of maximum ∆-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with ∆ ≥ 3 can be extended to a maximum ∆-edge-colorable subgraph. Simple graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2017
ISSN: 1232-9274
DOI: 10.7494/opmath.2017.37.3.435